

Grid Bearing Solution for Mine Surveying

ADDING Azimuth Grid Bearing in MOVE3

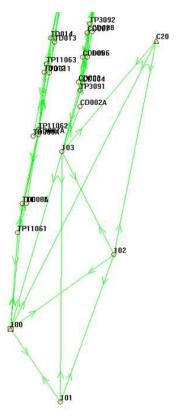
The grid bearing is mainly to exclude a possible rotation in the adjustment due to fix stations being close together and to get similar results for the coordinates with previous adjustments. This way you can fix the orientation of the network.

Measured gyro azimuths will do this also, but due to limited accuracy and the fact that in mines they can only be measured over short distances their effect on controlling the orientation will be limited.

We suggest to use the computed grid bearings only if there is no other solution to better fix the orientation. If a network is well braced then this method less applicable. For example: if there are control points at the 2 entrances of a mine, so the control points are further apart than what you would have with just one leg and an narrow entrance this is well braced.

For Mine Surveyors who run into the problem with limited fix stations, fix stations close together and in the same direction as the network one narrow leg then adding the **Grid Bearing** is the solution for you!

Would Gyro shot solve this problem?

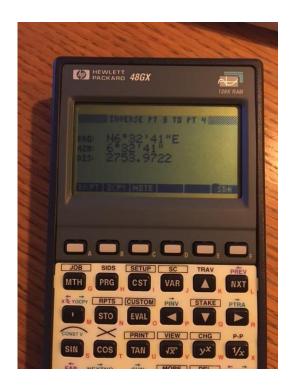

The gyro's fix the orientation of the network. This is also fixed by the known points, so there may be a conflict there (azimuths versus known coordinates).

By measuring azimuths in a mine, it is usually not possible to take long lines so to some extent before and certainly after the measurement you will again be building up uncertainty with each leg of the network. So adding a few azimuths in a large network does not bring a lot of improvement.

Problem

If the fixed stations are at one end of the leg there is a risk that in a remeasurement you will get coordinates that are rotated.

For example if there is a short basis that is fixing the orientation of a 1 km mine network leg the solution is depending on the final solution of the orientation. So your largely dependent on the measurements at the beginning, any small difference in the orientation on this 100 m difference in East between fix station 100 and fix station C20 will lead to al 10 times as big difference in the East of the points at the at the end. This is a leverage of 10 times. This is also expressed in the standard deviations of the East of these points that is up to 10 cm.



It is like a leverage, one mm difference at the one end of stations being 10 m apart can easily multiply by 100. If the leg is 1000 m long, so the 1 mm will become 10 cm. To avoid this rotation the grid azimuth can be entered to force both networks in the same orientation. To do this it would be best to take the grid azimuth between an **arbitrary fixed station** and an **arbitrary station** at the other end. Of course you should always be aware of what you are doing, and that using the grid bearing orientation will affect the final solution. From a perspective of trying to match the results of 2 separate check surveys. It seems a good option to resolve the weak orientation caused by the location of the fixed stations close together.

How to calculate Grid Bearing for MOVE3

After successful adjustment in MOVE3

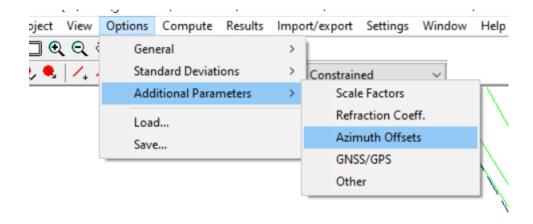
This needs to be done by hand, or in excel using an arctan of the coordinate differences in North and East of the points. Easily you can use your cogo software in your Leica or Trimble field controller also to calculate the azimuth bearing. Or pull out your old HP calculator with survey solutions.

Adding the Grid Bearing in MOVE3

Observations – Edit – Insert - Azimuth

/	Observati	ons					
Clo	se Edit	Tools					
	N	Edit Observation		Instr Hgt	Target		Reading
	48	Insert				A0	0 00 00.00
	1	Delete		1.7150	1.5400	R0	0 00 00.00
	2	Add Steel Tape Se	eries	1.7150	1.5830	R0	27 38 55.40
	3	Edit Steel Tape Se	ries	1.7150	1.5320	R0	119 06 16.20
	4	Add Chainage Of	fset	1.7150	1.6960	R0	349 29 16.10
	5	Edit Chainage Of		1.7150	1.5400	R 1	0 00 00.00
	6	Add Shift Vectors		1.7150	1.5830	R 1	27 38 56.80
	7			1.7150	1.5320	R1	119 06 16.70
	8	Change Station N	lames	1.7150	0.0000	R1	338 35 01.80
	9	Copy Observatio	ns	1.7150	1.6960	R1	349 29 17.80
	10	Add Observation	s	1.5390	1.7150	R0	0 00 00.00
	11 —	620	103	1.5390	1.6960	R0	13 24 31.10
	12	C20	102	1.5390	1.5830	R0	344 21 15.60
	13	103	C20	1.6950	1.5400	R0	0 00 00.00
	14	103	102	1.6950	1.5830	R0	113 18 14.80
—							

Or

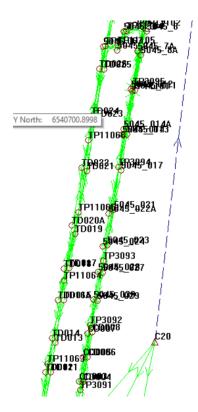

Double click on observation ADD - Azimuth

] 1	100	C20	1.7150	1.5400 F	RO 0.00.00	S0 392.6506 Z0	89 35 56.10	3D	C:\MOVE3 Projecten\Austra
2	100	102	1.7150	1.5830 F	27 38 55.40	S0 154.4350 Z0	89 20 47.40	3D	C:\MOVE3 Projecten\Austra
3	100	101	1.7150	1.5320 F	119 06 16.20	S0 107.8198 Z0	90 07 52.50	3D	C:\MOVE3 Projecten\Austra
4	100	103	1.7150	1.6960 F	349 29 16.10	S0 224.5430 Z0	89 45 03.20	3D	C:\MOVE3 Projecten\Austra
5	100	C20	1.7150	1.5400 F	0 00 00.00	Edit observations			× ⊧cten\Austra
6	100	102	1.7150	1.5830 F	27 38 56.80	Total Station Azimuth			cten\Austra
7	100	101	1.7150	1.5320 F	1 119 06 16.70	Total Station Azimuth			cten\Austra
8	100	TD005A	1.7150	0.0000 F	338 35 01.80	4823 100 C20			cten\Austra
9	100	103	1.7150	1.6960 F	349 29 17.80				:cten\Austra
10	C20	100	1.5390	1.7150 F	0 00 00.00	From 100	~ IH	0.00000 m	:cten\Austra
11	C20	103	1.5390	1.6960 F	13 24 31.10	To C20	✓ TH	0.00000 m	cten\Austra
12	C20	102	1.5390	1.5830 F	344 21 15.60				cten\Austra
13	103	C20	1.6950	1.5400 F	0 00 00.00	Azimuth A	0	0 00 00.00 dms	cten\Austra
14	103	102	1.6950	1.5830 F	113 18 14.80	St Dev Abs		0 00 03.00 dms	cten\Austra
15	103	101	1.6950	1.5320 F	140 16 11.80	St Dev Rel		0 00 00.00 dms.km	cten\Austra
16	103	100	1.6950	1.7150 F	156 04 54.00	Deselection			cten\Austr
17	102	C20	1.5820	1.5400 F	0 00 00.00				cten\Austr
18	102	101	1.5820	1.5320 F	188 51 11.70	Add new observation ty	/pe	×	cten\Austra
19	102	100	1.5820	1.7150 F	223 17 45.70	Total station		OK	cten\Austr
20	102	103	1.5820	1.6960 F	322 21 26.50	Direction			cten\Austr
21	101	100	1.5310	1.7150 F	0 00 00.00	Distance Zenith angle		Cancel	cten\Austr
22	101	103	1.5310	1.6960 F	34 34 24.60	Azimuth Height difference			cten\Austr
23	101	102	1.5310	1.5830 F	54 06 07.30	Geometrical relation			cten\Austr
24	100	TD005A	1.7180	0.0000 F	0 00 00.00	Angle Parallelism			cten\Austra
25	100	103	1.7180	1.6280 F	10 54 14.80	Collinearity			cten\Austra
26	100	C20	1.7180	1.5810 F	21 24 56.30	Distance point-line Perpendicular			cten\Austra
27	100	101	1.7180	1.4760 F	140 31 14.50	Perpendicular lines	5		cten\Austra
28	100	TP11061	1.7180	0.0000 F	359 05 47.80	Chain and offset Identical stations			cten\Austr
29	TP11061	100	0.0000	1.7180 F	0 00 00.00	Double distance			:cten\Austr
30	TP11061	TD005A	0.0000	0.0000 F	183 52 37.30	Add Tape distance Circle radius			cten\Austr
31	TP11061	TD007A	0.0000	0.0000 F	187 25 11.40	OK GNSS/GPS baseline			Help :cten\Austra
32	TP11061	TD005	0.0000	0.0000 F	191 48 48.40	S0 Shift vector GNSS/GPS coordinate			C:\MOVE3 Projecten\Austr
33	TP11061	TP11062	0.0000	0.0000 F		S0 1 Local coordinate			C:\MOVE3 Projecten\Austr
34	TP11062	TD005A	0.0000	0.0000 F		so			C:\MOVE3 Projecten\Austr
35	TP11062	TD008A	0.0000	0.0000 F		S0 9.6230 Z0	85 34 57.90	3D	C:\MOVE3 Projecten\Austra

Edit obser	vations			×
Azimuth]			
308 2	2590-18-18	2590-18-16		T
From	2590-18-18		0.00000	-
То				
10	2590-18-16	▼ TH	0.00000	m
Azimut	h	A 0 🊔	134 03 33.00	dms
	ev Abs		0 00 00.00	dms
St D	ev Rel		0 00 00.00	dms.km
Dese	election			
		Relat	ive to Grid North 🛛 📝	
	Add	Apply	Apply all	
	<u>o</u> k		Source	Help
	<u>o</u> n		Source	

Since you are adding this as a constraint, and not as an observation it would be best to use 0 St Div.

If it is a grid azimuth also check Relative to Grid North. Be sure to have the Azimuth offset fixed.


andoi	nal param	eters				
	GNSS/GP	S transform	nation parameters		Other Parameters	
1	Scale factor		Vert refractioncoeff		Azimuth offse	
0	Fixed	~	0 00 00.00	dms		
1	Fixed	*	0 00 00 00	dms		
2	Fixed	\sim	0 00 00 00	dms		
3	Fixed	Y	0 00 00.00	dms		
4	Fixed	\sim	0 00 00.00	dms		
5	Fixed	~	0 00 00.00	dms		

By adding the theoretical bearing of a long line as a azimuth measurement you will be able to fix the orientation of the network and get better standard deviations at the end. The largest ones will now be probably somewhere in the middle, but smaller than before.

Question

Would adding one grid bearing observation be enough could you add more?

Usually one would be enough, especially if it is a straight leg. Maybe if you include more separate legs in the network you would like to include one for each leg. If there is a large bend in the leg then the azimuth from the beginning to the end may not be able to avoid that there are differences at a bend.

Wayne Pappas

MOVE3 Australia July 2021